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Abstract Central to structural studies of biomolecules are

multidimensional experiments. These are lengthy to record

due to the requirement to sample the full Nyquist grid.

Time savings can be achieved through undersampling the

indirectly-detected dimensions combined with non-Fourier

Transform (FT) processing, provided the experimental

signal-to-noise ratio is sufficient. Alternatively, resolution

and signal-to-noise can be improved within a given

experiment time. However, non-FT based reconstruction of

undersampled spectra that encompass a wide signal

dynamic range is strongly impeded by the non-linear

behaviour of many methods, which further compromises

the detection of weak peaks. Here we show, through an

application to a larger a-helical membrane protein under

crowded spectral conditions, the potential use of com-

pressed sensing (CS) l1-norm minimization to reconstruct

undersampled 3D NOESY spectra. Substantial signal

overlap and low sensitivity make this a demanding appli-

cation, which strongly benefits from the improvements in

signal-to-noise and resolution per unit time achieved

through the undersampling approach. The quality of the

reconstructions is assessed under varying conditions. We

show that the CS approach is robust to noise and, despite

significant spectral overlap, is able to reconstruct high

quality spectra from data sets recorded in far less than half

the amount of time required for regular sampling.

Keywords Compressed sensing � Nonuniform sampling �
NOESY spectroscopy � l1-norm minimisation �
Signal-to-noise ratio � Resolution � NMR spectroscopy

Introduction

Along with X-ray crystallography, NMR spectroscopy is

the only atomic resolution technique available to study

molecular structure. Developments in the field in recent

years have increased the size-limit to which NMR struc-

tures can be determined (Pervushin et al. 1997). These

developments have allowed NMR spectroscopy to probe

increasingly demanding applications, including protein

complexes (Fiaux et al. 2002; Sprangers et al. 2007), and

the class of larger membrane proteins (Gautier et al. 2010;

Hiller et al. 2008; Kim et al. 2009; Nietlispach and Gautier

2011).

Central to such structural studies are multidimensional

experiments with three and four dimensions, typically used

to assign backbone and side-chain connectivities, and that

provide essential distance information via the nuclear

Overhauser effect between protons close in space. With the

long time required to sample the full Nyquist grid for

Fourier-transform processing of multidimensional experi-

ments, the stability of samples is frequently a limiting

factor, while low concentrations exacerbate this situation.

Furthermore, under conditions where peaks are likely to

overlap and be of low intensity as encountered with larger

proteins, obtaining conditions that provide both sufficient

resolution and signal-to-noise ratio (SNR) can be difficult

to achieve.
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Hence, data collection coupled to Fourier transformation

for multidimensional experiments is frequently a compro-

mise between the number of points acquired in the indirect

dimensions and the number of scans acquired per incre-

ment. Thus, either the SNR can be increased by increasing

the number of scans, at the cost of reducing the number of

indirect data points, or the resolution can be improved by

recording more data points in the indirect dimensions, at a

cost of reducing the number of scans per increment that can

be recorded in a given experiment time, thus limiting the

SNR. Time-domain undersampling combined with suitable

processing methods offers the potential to improve reso-

lution and signal-to-noise.

So-called undersampling, nonuniform or sparse sampling

of multidimensional spectra was demonstrated many years

ago as an alternative to recording the full Nyquist sampling

grid (Barna et al. 1987; Schmieder et al. 1993, 1994). As it is

no longer possible to use the discrete Fourier transform to

reconstruct such undersampled spectra, alternative recon-

struction techniques have been proposed including nonuni-

form Fourier transform (Coggins and Zhou 2008;

Kazimierczuk et al. 2006; Marion 2005, 2006), maximum

entropy reconstruction (Barna et al. 1987; Hoch et al. 1990;

Rovnyak et al. 2004), multi-dimensional decomposition

(Orekhov et al. 2001; Tugarinov et al. 2005), maximum

likelihood estimation (Chylla and Markley 1995) and many

others (Atreya and Szyperski 2004; Freeman and Kupče

2003; Frydman et al. 2002; Kupce and Freeman 2004; Kupce

et al. 2003; Mandelshtam 2000). To date, such methods have

largely been used to reconstruct undersampled backbone-

assignment experiments (Gautier et al. 2010; Rovnyak et al.

2004), which often show ample signal-to-noise with peak

intensities spread over a small dynamic range, or spectra of

highly deuterated or selectively-labeled samples, which

result in a less crowded spectrum (Hiller et al. 2008; Tu-

garinov et al. 2005). However, once signal intensities

encompass a wider dynamic range, nonparametric methods

show difficulties in the correct reconstruction of signal

intensities and may bias the detectability of weak peaks. This

renders them poorly suited for the crowded spectral envi-

ronments typical of 3D NOESY experiments. Weak cross

peaks often contain the most valuable structural information

and they are most likely to be suppressed.

Recently, we and others demonstrated the potential of

compressed sensing l1-norm minimization, to reconstruct

highly undersampled NMR spectra (Holland et al. 2011;

Kazimierczuk and Orekhov 2011) and Hyberts et al. (2012)

showed the applicability of iterative soft thresholding (IST)

as one form of l1-norm minimization to reconstruct 3D and

4D NOESY data demonstrating dramatic time savings.

Previously IST was suggested as a version of l1-norm

minimization in the context of extending fully-sampled but

truncated data (Stern et al. 2007). While l1-norm

regularization has been available over decades (Logan

1965), in the context of more recent applications the notion

‘Compressed Sensing’ (CS) was formulated (Donoho

2006; Candes et al. 2006) and CS has become increasingly

popular in a number of signal processing fields, including

image reconstruction (Holland et al. 2010; Hu et al. 2008;

Lustig et al. 2007; Otazo et al. 2010) and was also shown to

be suitable for the reconstruction of sparsely-sampled

multidimensional NMR spectra (Drori 2007). Here we

briefly outline the principle of CS for application to NMR

spectroscopy. Consider the system of underdetermined

linear equations

Ax ¼ b ð1Þ

where A is an M 9 N matrix and x is a vector of length N that

is to be recovered from measurements b, where b is a vector

of length M, and M \ N. In the case of NMR spectroscopy, x

corresponds to the spectrum in the frequency domain, b to

the measurements in the time domain, and A is the inverse

Fourier transform. Since M \ N, (1) has infinitely many

solutions. CS demonstrates that providing the spectrum, x, is

sparse, x can be exactly reconstructed from O(k) random

projections (for a k-sparse spectrum i.e. with no more than k

nonzero components), by solving

min
x

xk k0 subject to Ax ¼ b ð2Þ

where the l0-norm is a pseudo-norm defined by:

xk k0¼
X

i

xij j0 ð3Þ

with 00 = 0 (Donoho 2006), in other words, finding the

sparsest solution, i.e. that with the fewest nonzero

elements, which is consistent with the measured data.

Above, xi is the ith element of x. The minimization

described by (2) is a combinatorial problem, therefore it

has been shown that for realistic spectra, it is not possible

to solve (2) computationally (Natarajan 1995). However,

where the solution to the l0-norm is sufficiently sparse,

minimising the l1-norm (4, 5) returns the same solution and

can be solved using standard linear programming

min
x

xk k1 subject to Ax ¼ b ð4Þ

where

xk k1¼
X

i

xij j ð5Þ

and which generalizes for the lp-norm to

xk kp¼
X

i

xij jp
 !1=p

ð6Þ

with p [ 0. When b contains noise, or is not sparse, but

merely compressible, situations that occur for most
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practical applications, the constraint in (4) can be relaxed

taking a number of different formalisms in various

algorithms such as

min
x

xk k1 subject to Ax� bk k2� d ð7Þ

Compressed sensing requires (i) sparse representation of

the desired signal in a particular basis and (ii) incoherent

sampling with respect to that basis. An initial estimation of

the signal location is not required.

Many NMR spectra are sparse in the frequency domain,

with sparsity increasing as the number of dimensions

increases. Crucially, CS theory states that the number of

measurements required to recover a signal is Cklog(N),

where C is a constant of proportionality. This means the

number of measurements is dependent primarily on the

number of non-zeros in the signal (i.e. k), and is dependent

only weakly on the number of points in the final spectrum,

N. Therefore, the dimensionality of the experiment can be

increased with only a slight increase in the number of

measurements. For example, to add a third dimension to a

2D experiment containing n2 points in the first indirect

dimension and n3 points in the second indirect dimension,

would conventionally require a factor of n3 additional

measurements; in the CS framework only a factor of

(1 ? log(n3)/log(n2)) additional measurements are

required. Assuming say 32 points in each dimension, this

would represent a time saving of up to 16 times.

The incoherence of aliasing artifacts due to undersam-

pling in the time-domain is typically increased by ran-

domized nonuniform undersampling. Next to the

reconstruction method used, this introduces a further

dependence of the obtainable spectral quality on the sam-

pling schedule. Many sampling approaches have been

proposed in this ongoing field of research (Barna et al.

1987; Coggins and Zhou 2008; Eddy et al. 2012; Hyberts

et al. 2010, 2011; Kazimierczuk et al. 2008; Kupce and

Freeman 2003; Mobli et al. 2006; Rovnyak et al. 2004).

The degree of randomness and level of sampling artifacts

generated by a given sampling scheme can be readily

assessed by calculation of the point spread function (psf).

This involves computing the Fourier transformation of the

binary sampling function, where ones represent sampled

points, and all other points are set to zero (Hoch et al. 2008;

Kazimierczuk et al. 2010). Growing randomization typi-

cally increases the reconstruction quality (Hoch et al.

2008).

Compressed sensing has been demonstrated as suitable

for reconstructing highly-undersampled spectra for back-

bone assignment e.g. HNCA and HN(CO)CA, and, cru-

cially, was shown to successfully reconstruct low-intensity

peaks in the presence of stronger peaks (Holland et al.

2011). The apparent linearity of the method over a large

dynamic range of signal intensities suggested its suitability

for reconstructing 3D NOESY spectra (Holland et al. 2011;

Kazimierczuk and Orekhov 2011) as was recently dem-

onstrated (Hyberts et al. 2012). In situations where back-

bone-assignment experiments are recorded following a

sparse sampling protocol, 3D NOESY spectra are likely to

become the time-limiting data-recording step. In this paper,

we demonstrate with CS the possibility to obtain high

quality 3D NOESY spectra from undersampled data

recorded on a fully-protonated sample of a large membrane

protein. We show that the full range of signal intensities

can be accurately reproduced and despite extremely

crowded spectra, substantial time savings of 60–70 % are

achievable.

We assess the quality of the reconstructions and the use

of different undersampling factors through comparison

with the Fourier-transformed spectrum of the complete

data matrix. We validate the linearity of the reconstruction

over the wide range of intensities present in the NOESY

spectrum, as well as the fidelity of reconstruction of peaks

at the correct chemical shift positions; results are compared

using different reconstruction algorithms and sampling

schemes. We conclude that the robustness of the recon-

structions to noise, the high quality of the produced spectra

and the substantial time savings make the methodology a

considerable asset for the study of large biomolecular

systems.

Methods

Data recording

NMR experiments were recorded as 3D NOESY 15N

HSQC experiments (smix = 100 ms) on a 0.5 mM sample

of 15N-labeled V17C mutant of sensory rhodopsin II

(pSRII) (pH 6.0, 63 mM c7-DHPC) on a Bruker DRX800

spectrometer equipped with a 5 mm TXI HCN cryoprobe

at 308 K. Experiments used water-flipback and Watergate

(Piotto et al. 1992) implementations and were recorded

with 512 complex data pairs in the directly detected 1H

dimension (acquisition time = 51 ms). A full data matrix

(suitable for FT in all dimensions) was recorded consisting

of 110 complex pairs in the 1H (t1,max = 13.1 ms) and 39

complex pairs in the 15N (t2,max = 15.5 ms) indirect

dimensions. Quadrature detection was achieved following

the States-TPPI recipe (Marion et al. 1989) and the first

increments were adjusted for (90�, -180�) phase settings.

The full data matrix was recorded in sets of 8 scans (50 h),

as required for phase cycling, which could further be co-

added to result in spectra with varying signal-to-noise

ratios. Subsets of this full data matrix were selected to

generate the undersampled data sets. The included data
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points varied depending on the chosen level of undersam-

pling and sampling scheme applied.

Fourier transform processing

All spectra were initially processed using the software

package Azara (W. Boucher, unpublished), where the

directly-detected 1H dimension was Fourier-transformed

once apodization with a Gaussian window function, a 90�
shifted sinebell squared function and zerofilling to 1,024

points had been applied. Finally, every row was baseline-

corrected to remove any DC offsets. For the full data

matrix of 110* 9 39* points (* indicates complex) Fourier

transformation in MATLAB was done after application of

90� (1H) and 60� (15N) shifted sinebell window functions

and zerofilling to 256 points. The final size of the real 3D

data matrix was 430 9 256 9 256 points.

Compressed sensing reconstruction

For the undersampled data sets, following processing of the

directly detected dimension in Azara as described above,

the full data matrix was subsequently imported into

MATLAB. Points in the indirect dimensions were then

selected according to the chosen sampling scheme to

generate the undersampled data matrices. For each selected

point, both cosine and sine modulated components were

included, equivalent to undersampling complex data pairs.

Data point selections correspond to the following under-

sampling schemes: exponentially-weighted, on-grid sam-

pling at 40, 30, 20 and 15 % and weighted-Poisson

sampling at 40 % (Hyberts et al. 2010, 2011). Exponential

sampling was carried out similar to previously published

methods (Barna et al. 1987; Rovnyak et al. 2011) using in-

house scripts: For a given indirect dimension, an expo-

nential of the form exp(–R2 9 cz/sw) was used, where R2 is

the average transverse spin relaxation rate constant of the

nucleus in question, sw is the spectral width for the given

dimension, z is the number of real points for the given

dimension and c is a constant used to scale the exponential

to give the appropriate sampling fraction. R2 values of 66

and 40 Hz (T2 = 15 and 25 ms) were used for 1H and 15N

respectively. The exponentials from both indirect dimen-

sions were combined, forming a probability density func-

tion (pdf) spanning the full matrix of indirect dimension

points, and the first point (1,1) was set to 1. A previously

published Monte-Carlo approach was then used to generate

a number of samples equal to the sum of the pdf, and with

the lowest transform point spread function (psf) (Lustig

et al. 2007). The first point (1,1) was always sampled. The

sampling scheme was then replicated such that both sine

and cosine points for each time-point were sampled.

Once the undersampled data sets were generated, com-

pressed sensing (CS) reconstruction of both indirect

dimensions was carried out with MATLAB using in-house

developed scripts or the previously published algorithm,

YALL1 (Yang and Zhang 2011) adapted for use with NMR

data. Spectra were viewed and analysed in Azara and

CCPN Analysis (Vranken et al. 2005) and spectral

assignments were carried out in Analysis.

Iterative hard thresholding (IT)

Scripts for this algorithm were based on work by Bredies

and Lorenz (2008). An initial estimate of the solution is

calculated by replacing the missing data time points with

zeroes followed by Fourier transformation. A threshold is

subsequently set where data points above it in the fre-

quency domain are stored. The inverse transform of this

subset is calculated and the result subtracted from the

original data set. The operation is repeated iteratively and

can be described as:

x½nþ1� ¼ x½n� þ HkðATðb� Ax½n�ÞÞ ð8Þ

where, x0 ¼ 0: and HkðaÞis a non-linear operator which

sets the elements of a (ai), that are below a threshold k, to

zero:

HkðaÞ ¼
0 aij j\k
ai aij j � k

�
ð9Þ

In the case of NMR data, A represents the inverse Fourier

transform and AT the forward Fourier transform; b is the

undersampled data and xn the estimated spectrum at itera-

tion n. For the reconstructions in this paper, k was set at

90 % of the maximum value in the Fourier transformed data

and recalculated for each iteration. Therefore, as n increa-

ses, ðATðb� Ax½n�ÞÞ tends to a spectrum containing only

noise. Alternative stopping criteria were used: (i) recon-

structions were stopped when the number of points in the

reconstruction was equal to a proportion (e.g. 40 % for a

40 % sampling schedule) of the total number of points

(assuming full sampling) in the indirect [1H,15N]-plane i.e.

220 9 78; (ii) an estimate of the expected noise in the data

set was calculated and the iterations stopped once the

standard deviation of the term ðATðb� Ax½n�ÞÞ approached

this noise value. The noise estimate was determined by

calculating the standard deviation of each indirect [1H,15N]

plane after a zero-filled Fourier transform of the under-

sampled data. Values for planes with no peaks were used to

give the noise estimate; (iii) ||Ax - b||2 was calculated at

each iteration, where b is the undersampled data and Ax

represents the inverse Fourier transform of the spectral

reconstruction at a given iteration. Iterations continued until

||Ax - b||2 \ d was achieved, where d is user-defined.
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Iterative soft thresholding (IST)

In contrast to hard thresholding, IST involves soft thres-

holding or non-linear shrinkage (Daubechies et al. 2004);

data points in the frequency domain below a designated

threshold are set to zero, whilst those above are shrunk

towards zero. The inverse Fourier transform is calculated and

the result removed from the original data. The operation is

then repeated iteratively which can be represented as:

x½nþ1� ¼ Skðx½n� þ ATðb� Ax½n�ÞÞ ð10Þ

where Sk(a) is defined as:

SkðaÞ ¼
0 jaij\k
ðjaij � xkÞ � signðaiÞ jaij � k

�
ð11Þ

where k is the threshold parameter, which was set to 104 for

the reconstructions in this paper and x is a scaling factor

which was set to one for the reconstructions shown here.

Reconstructions were stopped either (i) when the gradient

of the standard deviation of the residual against iteration

number approached zero or, (ii) to achieve lower values of

||Ax - b||2, once the change in ||Ax - b||2 was constant

indicating convergence at a given k, the value of lambda

was reduced and the calculation repeated; this was con-

tinued (while k[ 1) until the desired value of ||Ax - b||2
was achieved.

YALL1 (Your ALgorithms for L1 Optimisation)

A method as described by Yang and Zhang (2011) was

adapted for use with Fourier transformation and the l1/l2
convex minimization equation

min
x

xk k1 subject to Ax� bk k2� d ð12Þ

was solved with d set to 16,800 (high ||Ax - b||2), or 1

(low ||Ax - b||2) (Table 1). The stopping tolerance was set

to 10-4. While no improvement in spectral quality was

found by lowering this to 10-5, the reconstruction quality

declined on increasing it to 10-3.

For each of the reconstructions the values for ||Ax - b||2
and ||x||1 are reported (Table 1). All scripts used for this

work will be available implemented in the processing

software Azara.

Reconstruction times

Reconstructions were carried out in MATLAB on an AMD

Phenom II, Quad Core 3.0 GHz processor, with 8 GB of

memory. Reconstruction times varied slightly dependent

on machine load but were typically 30 - 60 min for IT

reconstruction with high ||Ax - b||2 or *3 h for a tighter

constraint ||Ax - b||2, *30 min for IST using criteria (i),

or 2 h 30 with the constraint ||Ax - b||2 = 2 using stop-

ping criteria (ii) and *4–5 h for YALL1 reconstruction.

For more detail, see Table 1.

Spectral data analysis

All NMR spectra were analysed in the CCPN software suite

Analysis (Vranken et al. 2005), which was used to obtain

spectral assignments, peak positions, peak intensities and

values for spectral noise. A noise level of 8.4 9 104 was

determined based on the full FT data, and a contour

threshold 1.25 times above this noise level was used as a

setting for NOE cross-peak picking and analysis of all the

spectra. Accordingly, the same corresponding artifact level

(rather than noise level) was used for the nonlinear pro-

cessed spectra. In this report, in the interest of simplicity, we

refer to noise level rather than artifact level, regardless of

the processing method employed. Picking of the peaks with

intensities above this contour threshold was obtained auto-

matically using the in-built peak-picking algorithm in

Analysis. To validate the performance of the peak recon-

structions for different signal intensities, peaks in the

Table 1 Comparison of the l1-

norm and ||Ax - b||2 parameters

for the different algorithms and

sampling factors discussed in

the paper A, x and b represent

the inverse Fourier transform,

spectrum and recorded data

respectively as discussed in the

paper. r is the standard

deviation

–

– –

–
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original Fourier-transformed spectrum were classified

according to their intensities. Accordingly, from the large

number of selected peaks, which spread over a wide

dynamic range, several subsets (bins) each consisting of 100

peak intensities, were randomly chosen in the following

peak intensity ranges (I): 105 B I \ 5 9 105, 5 9 105 B

I \ 106, 106 B I \ 107, 107 B I \ 108, I C 108 (corre-

sponding to a SNR range from 1.2 to [ 1,200). Where less

than 100 peaks were present, all peaks in that particular bin

were included. Upon closer inspection of the selected peaks

a small number, which were clearly recognizable as spuri-

ous noise, truncation artifacts, or with their intensities dis-

torted by the presence of neighboring peaks, were excluded

from the analysis. Intensities and chemical shift positions of

the remaining peaks were selected for a quantitative eval-

uation of the performance of the CS reconstructions. Root

mean squared errors (RMS) (%) for the sums of the peak

intensities within any of the above intensity bin ranges were

calculated according to

RMS (% ) =

P
i ðpFT

i � pCS
i Þ

2
� �0:5

P
i ðpFT

i Þ
2

� �0:5
ð13Þ

where pi
FT and pi

CS are the intensities for the ith peak in a

given bin for the fully sampled FT spectra and CS recon-

structed undersampled spectra, respectively.

A quantitative assessment of the effect of the CS

reconstructions on the peak positions within the spectra

was made on a per residue basis for the indirect dimen-

sions. Combined nucleus-weighted chemical shift changes

between FT and CS processed spectra were determined

according to:

Dd ¼ d1HCS � d1HFTð Þ2 þ d15NCS � d15NFTð Þ=2:5ð Þ2
� �0:5

ð14Þ

Results and discussion

In this contribution we show, based on 3D NOESY 15N

HSQC data, the suitability of compressed sensing meth-

odology to reconstruct extremely crowded NOESY spectra

recorded on a detergent-micelle solubilized membrane

protein. Due to the large number of signals with intensities

covering a considerable dynamic range and the frequent

spectral overlap this is a demanding application. We assess

the performance of the CS reconstructions qualitatively

through direct comparison of the spectra and quantitatively

in particular with regard to peak intensities and peak

positions. Comparing against the Fourier-transformed

spectra as the ‘gold standard,’ we show and discuss the CS

results obtained using a range of algorithms and different

conditions. For a reliable assessment of the different CS

reconstruction methods, comparisons are made using sim-

ilar values for the constraint ||Ax - b||2. Several cases are

tested and the results emphasize the robustness of the CS

reconstructions.

Common to many other processing methods, the benefit

of CS lies in its powerful ability to reconstruct sparsely

sampled data sets, thus allowing experiment times to be

considerably reduced if the overall signal-to-noise permits,

or alternatively if sample concentrations are limiting to

benefit from improved spectral resolution and SNR per unit

time. SNR and resolution issues are particularly pro-

nounced in the study of large proteins and/or for biomol-

ecules that have a relatively limited sample lifetime and

hence such cases will benefit dramatically from sparse

sampling.

Our study shows that CS reconstructions are of very

high quality, do not noticeably reduce the detectability

limit for the weakest peaks, prove to be linear over the

tested wide range of spectral intensities observed in a

NOESY spectrum and do not show any systematic devia-

tions in peak positions. Consequently, CS-reconstructed

NOE spectra are suitable for obtaining structural informa-

tion with substantial time savings. The CS technique is

potentially better suited when compared to other recon-

struction methods, which may struggle under the condi-

tions of the large signal dynamic range encountered here,

and may reduce or even suppress the structurally important,

weaker cross peaks.

As a typical example of an application to a larger bio-

molecular entity which gives crowded NOESY spectra, we

have recorded 3D NOESY 15N HSQC data on a fully

protonated sample of sensory rhodopsin II (pSRII) which

forms a 70 kDa protein-detergent complex in c7-DHPC

micelles (Gautier et al. 2010). Spectra were recorded at

800 MHz and 308 K, where the rotational correlation time

of the protein is 34 ns. Spectra were processed using

Fourier transformation as well as CS reconstruction using

several algorithms and sampling schemes. A full data

matrix with 110 9 39 complex pairs in the indirect 1H and
15N dimensions was recorded for the Fourier-transformed

reference spectrum while undersampled data sets were

generated from this full data matrix by selecting only the

time points which were in agreement with the chosen

sampling scheme. This was then followed by subsequent

CS reconstruction of the spectra.

Figure 1 shows a comparison between the fully-sam-

pled, Fourier-transformed reference data and spectra

reconstructed by CS, using the iterative hard thresholding

algorithm (see ‘‘Methods’’) from 50 % of the original data

matrix in both 1H and 15N indirect dimensions. The indirect

dimensions were undersampled using an exponential

sampling scheme weighted by the average T2 values of the

20 J Biomol NMR (2012) 54:15–32
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1H (15 ms) and 15N (25 ms) spins in question (see

‘‘Methods’’). Two representative planes at 15N frequencies

of 120.80 ppm (Fig. 1a) and 127.58 ppm (Fig. 1b) are

shown, demonstrating the fidelity of the CS reconstruction

under very contrasting spectral conditions: in Fig. 1a the

cross peak regions are very overlapped and a lot of the

peaks are weak compared to the diagonal signals, while in

Fig. 1b, overlap is not a significant problem and the signals

are also generally more intense. The enlarged areas dem-

onstrate the high quality of the reconstruction for regions

both near the intense diagonal of the amide signal and the

weaker aliphatic cross peaks. As can be seen, the achieved

resolution in the 50 % undersampled CS spectra matches

that in the FT-processed spectra.

To illustrate the impact of the CS reconstruction

approach on signal-to-noise and resolution, both planes of

Fig. 1a and Fig. 1b are shown as (i) processed with FT

using the full data matrix recorded over 100 h (16 scans),

(ii) the 50 % undersampled CS reconstruction of the data

set recorded in only 50 h (16 scans) and (iii) the analogous
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Fig. 1 Comparison of two

[1H,1H] planes from a 3D

NOESY 15N HSQC spectrum at
15N positions of (a) 120.80 ppm

(Phe 210) and (b) 127.58 ppm

(Ala 64), recorded and

processed with different

methods: (i) fully sampled

Fourier-transformed (FT)

spectrum recorded with 16

scans (100 h); (ii) compressed

sensing reconstruction using

50 % sampling (equivalent to

50 h) with the iterative hard

thresholding algorithm (IT); (iii)
the fully sampled Fourier-

transformed spectrum recorded

with 8 scans (50 h). Spectral

expansions of diagonal and

aliphatic regions are shown for

the areas surrounded by a

dashed square. Dotted grey
lines indicate the corresponding

shift positions of the amides at

which the two planes in (a) and

(b) have been centered. In

(b) regions marked by grey
rectangles indicate a few

examples where the compressed

sensing reconstruction shown in

(ii) is able to detect weak peaks

that are not observable in the FT

spectrum (iii) recorded over the

same amount of time (50 h).

The negative peak at 10.25 ppm

(F1) is a folded diagonal signal
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FT spectrum as shown in (i) but with only half the number

of scans, corresponding to 50 h (8 scans) i.e. the same

amount of experiment time as for (ii). All our subsequent

observations apply both to Fig. 1a, b: Comparing the

spectra in (i) and (ii) shows the fidelity of the CS recon-

struction with the FT spectrum that was recorded for twice

as long, underlining the potential time-saving achievable

using the CS method. Comparing (ii) and (iii) shows the CS

reconstruction (16 scans) and full Fourier transform spec-

trum (8 scans), both recorded for identical times. The

contour base levels are scaled such that the viewed noise

level is equivalent in both spectra and it is clear that for the

same experiment time, CS achieves a higher SNR and is

able to detect weak peaks, which are not present in the

time-equivalent FT spectrum (iii). Examples of peaks close

to the noise limit, which show improved signal-to-noise in

the CS reconstruction, are highlighted by grey rectangles in

Fig. 1b.

It could be argued that the apparent lower signal-to-

noise with the FT method is the result of an unfair com-

parison, since large amounts of time in the fully-sampled

FT spectrum have to be spent to obtain sufficient resolution

while sacrificing signal-to-noise. For illustration purposes,

the signal-to-noise benefit that underlies exponentially-

weighted sampling can be approximated in the fully-sam-

pled experiment by applying in each indirect dimension an

additional matched filter with a decay rate equivalent to

that used to generate the nonuniform sampling schedules.

Supplementary Figure 1 shows a comparison of the FT

spectra processed as shown in Fig. 1b, without and with the

additional matched filtering. As expected, when processing

with the matched filter, improvements in the SNR are

observed (and the SNR is now comparable to the CS-

processed data); however, the resolution has already

dropped to a point that interferes with the spectral inter-

pretation, even if for the region considered overlap is only

moderate. In view of the high complexity of the spectra

studied here, a performance comparison conducted under

the conditions of comparable and higher resolution for the

FT spectrum as shown in Fig. 1 seems more appropriate.

While the 50 % sampling case was used for direct

comparison with the FT-reconstructed spectra in Fig. 1,

high quality reconstructions can also be obtained by sam-

pling only 40 % of the full data matrix, shown in Fig. 2 (i).

Figure 2 also illustrates the impact of the amount of

sampling on the ability of CS to produce faithful recon-

structions. Three levels of exponentially-weighted sam-

pling are compared side-by-side; all spectra were

reconstructed using the iterative hard thresholding algo-

rithm from data with: (i) 40 % sampling, (ii) 30 % sam-

pling and (iii) 20 % sampling of the full data matrix. The

fidelity of the reconstruction remains high with 30 %

sampling as illustrated by both planes shown in Fig. 2a, b

with an experiment time corresponding to 30 h. Comparing

with the FT spectrum recorded over 50 h [see Fig. 1(iii)], a

benefit in signal-to-noise is still observable. However, the

quality of the reconstruction using 30 % of the data is

slightly inferior to 40 %, and additional spurious signals

are starting to appear in positions where there should not be

any peaks (indicated by grey rectangles in Fig. 2b). In the

case of the more complex spectra of the membrane protein

investigated here, it is believed that the higher sampling

factor of 40 % is beneficial (i.e. corresponding to a 60 %

time saving over recording the full data matrix required for

FT) and that the inferior spectral quality in the 30 % case

can lead to misinterpretations. Figure 2(iii) allows assess-

ment of the reconstruction quality obtained with 20 %

sampling. It becomes obvious that by now, the quality of

the reconstructed spectra has deteriorated quite signifi-

cantly. This manifests itself in several ways: in the crow-

ded regions of the spectra, the peaks have started to merge

as the resolution is starting to break down; a number of

intense artifacts are observed and finally, additional false

signals are starting to appear that are comparable in

intensity to real peaks; again selected examples are indi-

cated by grey rectangles in Fig. 2b. Clearly, any of this is

undesirable in spectra used for structure determination.

Nevertheless, as emphasized by (iii) in Fig. 2b, the regions

with more intense peaks and less crowding are still

reconstructed accurately with no apparent distortions in

peak position, shape or intensity, suggesting that, for

spectra with higher SNR and/or less overlap than in the

case demonstrated here, further undersampling than that

deemed acceptable for pSRII will be possible.

To further illustrate the quality of the 40 % sampled CS-

reconstructed IT spectrum, Fig. 3 shows several [1H,1H]

strip plots for a range of different residue types that are

mainly located in the overlapped a-helical structured

regions of pSRII. The FT (100 h, 16 scans) and CS (40 h,

16 scans) spectra are shown side by side. The CS recon-

structions are recognizable by the thicker frames. It can be

seen qualitatively that the spectra look very similar in

intensity and furthermore that the peaks in the CS spectrum

are recovered with accurate positions and no obvious sys-

tematic distortions in peak shape. Sequential series of

residues—Ala 91-Gly 92-Leu 93 (at the end of helix C and

in the loop connecting to helix D) and Thr 204-Lys 205 (in

the core of the transmembrane region)—are also displayed

showing, via dashed lines, some of the sequential NOE

assignments in order to highlight consistency in the cross

peak pattern and observed chemical shifts. Various regions

in the indirect 1H dimension are shown in order to dem-

onstrate the fidelity of the reconstruction both close to the

diagonal as well as in the side-chain regions. Some long-

range NOE cross peaks are also indicated. Residue

assignments were obtained based on the CS reconstructed
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spectra and successfully verified against the FT processed

spectra.

Under the demanding conditions tested here, we show

that iterative hard thresholding is able to reliably produce

accurate reconstructions of the crowded spectra even from

extensively undersampled time-domain data sets. However,

a range of other algorithms is also available for the

reconstruction of underdetermined systems of linear

equations according to (2). Using the 3D NOESY 15N

HSQC data sets sampled at 30 and 40 %, respectively, we

compare the performance of the iterative soft thresholding

(IST) algorithm (see ‘‘Methods’’) and the YALL1 l1-min-

imization method (Yang and Zhang 2011) against iterative

hard thresholding (IT). The YALL1 solver uses an alter-

nating direction method to solve a range of l1-norm mini-

misation models. The algorithm has been reported to

reduce the relative error between a fully sampled data set

and an undersampled reconstruction faster than other

available solvers under conditions of noisy data, to be

largely insensitive to the choice of starting point and initial

parameters and does not rely on a continuation or line-

search technique (Yang and Zhang 2011). Our
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Fig. 2 The 2D [1H,1H] planes

extracted at the same positions

as shown in Fig. 1, using the

iterative hard thresholding

algorithm (IT) with different

sampling fractions: (i) 40 %

(40 h); (ii) 30 % (30 h); (iii)
20 % (20 h). Examples of

regions where the

reconstructions start to break

down are indicated in

(b) through grey rectangles
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implementation used a model corresponding to (12) (see

‘‘Methods’’).

The spectra of the reconstructions using the different

algorithms are compared in Supplementary Figure 2, where

the same two planes displayed in Fig. 1 and 2 are shown. An

initial qualitative inspection shows the results to be quite

similar and underlines the fidelity of the reconstructions

using different methods for l1-norm minimization. All of the

spectra shown in Fig. 1, 2 and Supplementary Figure 2

correspond to reconstructions using a relaxed data-matching

constraint, i.e. high ||Ax - b||2. When compared on this

basis the high similarity of the spectra in Supplementary

Figure 2 is apparent and the only significant difference

between these algorithms is the reconstruction time, which

was \1 h for both IT and IST and in excess of 4 h for the

YALL1 algorithm.

It is important to evaluate the impact of varying the

constraint (||Ax - b||2) on the reconstructions. To this

purpose in a second set of calculations all three algorithms

were used to reconstruct the spectrum with a much tighter

constraint, i.e. low ||Ax - b||2 (Table 1). Reconstructions

with high and low ||Ax - b||2 are compared in Supple-

mentary Figure 3. The results show that enforcing greater

data consistency introduces significant artifacts into the

reconstructed spectrum, as would be expected, since the

tighter constraint will cause the reconstruction method to fit

the noise. This is consistent with an increase in the term

||x||1 when data matching is enforced, as shown in Table 1.

While IST is not shown in Supplementary Figure 3, IST

and IT with low ||Ax - b||2 are comparable. Generally, the

difference between the three different reconstruction

algorithms is minimal when compared at similar values of

||Ax - b||2.

Reconstruction times for the different algorithms varied

from approximately 30 min for the iterative soft and hard

thresholding algorithms to approximately 4–5 h for the

YALL1 approach (see ‘‘Methods’’ and Table 1 for full

details). Based on our experience, the main influence
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Fig. 3 [1H,1H] (F1,F2) strip plots from a 3D NOESY 15N HSQC

recorded on pSRII. The spectra were reconstructed using CS iterative

hard thresholding with 40 % sampling (40 h) and Fourier transfor-

mation on the fully sampled data (ns = 16, 100 h). The CS

reconstructions are recognizable by thicker frames. Cross peak

assignments are shown in proximity to the relevant peaks, with

dashed lines indicating sequential NOEs. Black diagonal lines
indicate the diagonal peak positions. Labels are not shown on every

strip to avoid crowding, however, equivalent labels can be found in

adjacent strips

24 J Biomol NMR (2012) 54:15–32

123



(a)
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(k)

Fig. 4 Intensity comparison of representative 1D slices taken parallel

to the indirect (F2) proton dimension, at the amide position of residue

Asp 239 (8.153 ppm 1H and 118.727 ppm 15N). In (a) and (b) the

corresponding 2D [F1,F2] strips of the FT and CS (IT 40 %)

reconstructions are are displayed, respectively, with the dashed line
marking the position of the 1D slices. 1D slices: Comparison of

different CS algorithms and sampling factors in (c) - (i) with the

Fourier-transformed version (16 scans) shown in (j) and (k). The

algorithm and sampling factors used are indicated beside each 1D

trace. In all cases, the CS reconstructions were carried out using a

high value of the constraint ||Ax - b||2 (*2 9 104). The intensity in

(k) is adjusted to show the diagonal signal, while all the other 1D

traces have been scaled by 27 9 to emphasize the large dynamic

range between diagonal peak and cross peaks

J Biomol NMR (2012) 54:15–32 25

123



affecting the length of the reconstruction times for the

iterative hard thresholding approach is the choice of the

stopping criteria (see ‘‘Methods’’). Initially a reconstruc-

tion was performed based on the assumption, derived from

CS theory, that the sparsity of the spectrum is related to the

amount of undersampling possible. This criterion was

found to be consistent with criterion (ii) which was based

on the apparent noise level of the residual. Note that

evaluation of the noise-based stopping criterion in the

frequency domain removes any bias introduced through

window functions applied in the time domain. Enforcing

greater data matching significantly lengthened the recon-

struction time for iterative hard thresholding, such that to

reach the lower value of ||Ax - b||2 \ 2 took *3 h,

compared to 30 min with the looser constraint. The IST

algorithm took *0.5 h to converge on a constant value,

corresponding to ||Ax - b||2 * 2 9 104. For the IST

implementation, reducing the value of the constraint

||Ax - b||2 with constant k significantly lengthens the

reconstruction. Therefore, to reconstruct the spectrum with

a tight data matching constraint, the algorithm was repe-

ated with decreasing values of k, resulting in longer

reconstruction times for lower values (*2.5 h for ||Ax -

b||2 * 2). Further time-savings for the IST reconstructions

may also be achieved using more advanced IST algorithms

such as FISTA (Beck and Teboulle 2009). For YALL1,

varying the weighting of the ||Ax - b||2 term did not affect

the reconstruction time significantly, taking *4–5 h in

each case. Further attempts to reduce the reconstruction

time to be comparable with the iterative thresholding

methods were not made.

A fundamental problem of all non-linear methods is the

correct recovery of peak intensities when the dynamic

range is large. Figure 4 shows representative 1D traces

taken along the F2 dimension (indirect 1H) from the vari-

ous CS reconstructions, compared with the full FT recon-

struction (100 h), at the F1, F3 amide position of Asp 239.

The extent of the large dynamic range reproduced by the

reconstructions is obvious. The 1D spectra (c–j) show a

27-times amplified version relative to (k), to illustrate the

intensity of the cross peaks in the reconstructions. The

faithfulness of the reconstructions and ability to recreate

peaks accurately over the large dynamic range is apparent,

although as noted previously, the quality declines for lower

sampling factors.

In order to further assess the quantitative aspects of the

reconstructions with respect to intensities, weak-peak

detectability and positions of peaks, a comprehensive peak

list was produced using the Fourier-transformed 3D NO-

ESY 15N HSQC spectrum of the full time domain matrix.

The peak-picking algorithm implemented in the software

package CCPN Analysis (Vranken et al. 2005) was used to

pick all peaks above a threshold set to 1.25 9 the average

noise level (8.4 9 104) corresponding to a contour level

display of 2D planes which was found suitable for manual

spectral assignment. To allow a more comprehensive rep-

resentative statistical analysis of the reconstructions based

on many different peak intensities, the resulting master list

of peaks was divided into five intensity bins, with each bin

containing peaks with intensities normalized with respect

to the noise level in the range I: 1.2 B I \ 6, 6 B I \ 12,

12 B I \ 120, 120 B I \ 1,200, I C 1,200. Within each

bin, 100 peaks were randomly chosen, or if less were

available, all peaks were included. The selected peaks were

then briefly manually inspected. Obvious noise signals or

peaks where the intensity was strongly distorted by the

presence of a neighboring peak were removed from the list.

The final filtered set of intensity bins in the FT spectrum

consisted of a total of 288 peaks, which were used to

identify the corresponding peaks in the CS reconstructions.

Total peak numbers for the different reconstructions are

given in Table 2. For each peak the true maximum in the

CS spectra was adjusted following a grid search for the

local intensity maximum within a few points of the original

Table 2 Number of observed peaks used to compare the spectral reconstructions: peaks are divided into five categories based on their intensities

FT IT 40 IST 40 YALL1 40 IT 30 YALL1 30 IT 20 IT 15

Intensity (l) & (h) (l) (h) (l) (h) (h) (l) (h) (h) (h)

1 9 105 B I \ 5 9 105 81

(100 %)

81

(100 %)

79

(98 %)

81

(100 %)

77

(95 %)

78

(96 %)

77

(95 %)

76

(94 %)

73

(90 %)

74

(91 %)

67

(83 %)

5 9 105 B I \ 1 9 106 88 88 88 88 88 88 88 87 88 88 88

1 9 106 B I \ 1 9 107 80 80 80 80 80 80 80 78 80 80 80

1 9 107 B I \ 1 9 108 26 26 26 26 26 26 26 26 26 26 26

I C 1 9 108 13 13 13 13 13 13 13 13 13 13 13

Overall 288 288 286 288 284 285 284 280 280 281 274

The numbers of peaks in the lowest intensity category are a measure of the peak detectability. Some of the reconstructions were repeated for low

(l) and high (h) constraint values ||Ax 2 b||2 (for exact values of the constraint, see Table 1); peak numbers are shown side-by-side
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value. The final coordinates and intensities were then

compared against the FT standard.

The intensities in the various CS reconstructions com-

pared with the fully-sampled FT spectrum (ns = 16) are

displayed in Fig. 5. Each point corresponds to an individ-

ual peak; the lines indicate equal intensities in both the FT

standard and CS reconstruction. For clarity, the different

correlations are offset along the y axis and intensities are

also expressed as a function of the SNR. It is clearly visible

that all the reconstructions are very linear and that the

intensity accuracy of all the reconstructions improves with

increasing S/N until the different methods start to produce

very similar results. At S/N values below five, differences

between the methods are starting to show, however, a

linear relationship is still maintained regardless of the

algorithm used. While for many of the methods the

intensity differences are relatively small, it is noticeable

that the spread in intensities increases as the amount of

sampling is reduced, again reflecting the prior qualitative

observations. Nevertheless, reconstructions based on 30 %

sampling are largely able to preserve the true intensities

well, but lower sampling factors quickly become unreliable

(20 and 15 %) and struggle to give accurate reproductions

over an increasingly wide range of data, although the

accuracy of the more intense peaks still remains high.

Figure 6a emphasizes the trend where reducing the

sampling factor increases the lower limit for which peak

intensities can still be faithfully reconstructed. All com-

parisons are made for similar high constraint values and

under comparable regularization (Table 1). The percentage

root mean squared (RMS) deviation between the FT

intensities and the CS reconstructed intensities based on

(13) (see ‘‘Methods’’) indicates the measure of precision

that has been achieved when considering all the peaks

within a given intensity bin. With 40 % sampling the RMS

values in the lowest intensity bin remains around 10 %,

which is very respectable when considering that the S/N

ratio for most of these peaks is significantly below five.

With increasing intensities, the RMS deviations drop rap-

idly for all sampling regimes, with the exception of the two

lowest sampling regimes IT 20 and IT 15, which only

become comparable with the other sampling factors for

intensities above 1 9 106 or 1 9 107 respectively. Fig-

ure 6a illustrates also that whilst the YALL1 algorithm

shows comparable performance to the iterative threshold-

ing methods in the lowest intensity bin, the error in the

reconstruction does not decrease quite as rapidly for the

higher intensity bins compared to e.g. the IT method.

Furthermore, at 30 % sampling, the YALL1 reconstruction

remains higher over the first three intensity bins. The IST

method performs well over all intensity bins and whilst the

differences between the methods are small, with the biggest

effect coming from the sampling schedule, we tentatively

suggest, based on extensive visual inspection as well as the

quantitative analysis that the iterative thresholding methods

result in slightly higher-quality reconstructions. To illus-

trate that this trend is not simply a consequence of the

choice of constraint and regularization values (see

Table 1), IT, IST and YALL1 reconstructions are shown in

Fig. 6b using comparable values for two cases with either a

low or a high constraint. The trends observed in Fig. 6a are

largely reproduced and it becomes clear that although

introducing a tight constraint on ||Ax - b||2 does increase

the artifact level in the reconstructed spectra (see Supple-

mentary Figure 3), it exercises a relatively small influence

on the RMS deviation in intensity for the true peaks. The

results emphasize that the reconstructions show an inherent

robustness towards the choice of constraint.

The mean errors in the chemical shift positions of peaks

for the indirect dimensions between the FT and CS

reconstructions using 40 % and 20 % sampling are shown

in Fig. 7a, as determined for each of the five intensity bins.

Other reconstructions are omitted for clarity. The differ-

ences in the chemical shift positions were calculated on a

peak-by-peak basis as given in (14) (see ‘‘Methods’’). A

dependence on the amount of sampling is very small. The

measured chemical shift differences are of a similar size to

the digital resolution of the individual indirect dimensions

(0.04 ppm for 1H and 0.1 ppm for 15N) in the spectra,

confirming the high quality of recovery of peak positions.

Chemical shift deviations were of the same order for all the

investigated reconstructions. Figure 7b illustrates the effect

of varying the data matching term, ||Ax - b||2 for the

individual methods at 30 and 40 % sampling. Similar to
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Fig. 5 Peak intensity comparisons as a function of the signal-to-noise

ratio, between the Fourier-transformed spectrum and the CS recon-

structed spectra using different reconstruction algorithms and sam-

pling factors. All reconstructions used a high value of the constraint

||Ax 2 b||2 (*2 9 104). Every data point represents a experimentally

determined peak intensity (see Table 2). Lines indicate where the two

compared methods would give equal intensities. For clarity, the

different comparisons are offset along the y axis of the plot.

Comparisons are given as a function of absolute peak intensity and

signal-to-noise ratio
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our prior observations for the intensitiy behaviour, these

results confirm that even though a tight constraint on

||Ax - b||2 increases the artifact level in the reconstructed

spectra, it exercises a relatively small influence on the

chemical shift deviation.

As a major drawback of many nonparametric regulari-

zation methods, the weakest signals are the ones most

prone to be reduced into the noise and hence to become

undetectable. In our analysis the number of peaks found in

the lowest intensity category in Table 2 can be considered

as a measure of detectability or completeness for each of

the reconstructions. It can be seen that for 40 % sampling,

the two iterative thresholding methods recover all the

expected peaks endorsing the reliability of these recon-

structions. YALL1 recovers slightly less, 96 % for the

same amount of sampling (and high ||Ax - b||2) while the

number of peaks varies only slightly with the d value. More

peaks are lost at the lower sampling factors, where 91 and

83 % of the peaks are observed for IT 20 and IT 15,

respectively. Recovering 95 % of the peaks, the IT method

is still competitive at 30 % sampling. These values seem

largely unaffected by changes in the l1-norm and constraint

parameter from ||Ax - b||2 \ 2 to 2 9 104 (Table 1), with

the largest effects coming from variations in sampling

level. At 30 % sampling the YALL1 reconstruction is

generally of lower quality than the iterative thresholding

1085x105

106

106

107

107

108

105

5x105

12001.2

6

6 

12

12 

120

120

1200

Absolute intensity

Signal to noise

R
M

S
 d

ev
ia

tio
n 

in
 in

te
ns

ity
 (

%
)

1085x105

106

106

107

107

108

105

5x105

12001.2

6

6 

12

12 

120

120

1200

Absolute intensity

Signal to noise

R
M

S
 d

ev
ia

tio
n 

in
 in

te
ns

ity
 (

%
)

IT 40

IT 40
YALL1 40 δ=1

YALL1 40 δ=16800

YALL1 30 δ=1

YALL1 30 δ=16800
high ||Ax-b||2

low ||Ax-b||2

IST 40

IST 40

0

2

4

6

8

10

12

14

16

18

20

0

5

10

15

20

25

30

35

IT 40
IT 30
IT 20
IT 15
YALL1 40 δ=16800
YALL1 30 δ=16800
IST 40

(b)

(a)

Fig. 6 Peak intensity root mean squared (RMS) deviation in

percentage for five different intensity ranges (bins). The CS recon-

structions are compared with the Fourier-transformed spectrum.

a Shows different algorithms and sampling factors using a high value

of the constraint ||Ax - b||2 (*2 9 104). b Compares the results on

varying the constraint ||Ax - b||2 (for values see Table 1). For details

of the formula used for the calculation of the RMS deviation see

‘‘Methods’’

IT 20
IT 40

M
ea

n 
ch

em
ic

al
 s

hi
ft 

de
vi

at
io

n 
(p

pm
)

I 1085x105

106

106

107

107

108

105

5x105

I 12001.2

6

6 

12

12 

120

120

1200

Absolute intensity

Signal to noise

M
ea

n 
ch

em
ic

al
 s

hi
ft 

de
vi

at
io

n 
(p

pm
)

I 1085x105

106

106

107

107

108

105

5x105

I 12001.2

6

6 

12

12 

120

120

1200

Absolute intensity

Signal to noise

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.01

0.02

0.03

0.04

0.05

0.06

IT 40

IT 40
YALL1 40 δ=1

YALL1 40 δ=16800

YALL1 30 δ=1

YALL1 30 δ=16800
high ||Ax-b||2

low ||Ax-b||2

IST 40

IST 40

(b)

(a)

Fig. 7 Mean chemical shift deviation in peak positions as a function

of the five considered intensity ranges (intensity bins). a Compares IT

reconstructions at different sampling factors (other reconstructions are

omitted for clarity), using a high value of the constraint ||Ax - b||2
(*2 9 104). b Compares the results on varying the constraint ||Ax -

b||2 (for values see Table 1). Weighted averages of the two indirect

dimensions in the CS reconstructions are compared with the Fourier

transformed spectrum. Error bars indicate the standard deviation of

the mean. For further details, see ‘‘Methods’’
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reconstruction (see also Fig. 6). However, overall the dif-

ferences are relatively small and should not be

overinterpreted.

Variation of the constraint value in the range tested

shows relatively little significant effect on intensity and

shift positions of peaks (Figs. 6b and 7b) confirming the

inherent robustness of the reconstructions. The major effect

observed is the increase in artifact level already discussed

(see also Supplementary Figures 2 and 3); consequently we

favour the choice of a higher value for the constraint

||Ax - b||2 which results in a lower l1-norm.

The choice of sampling pattern can have a dramatic

effect on the outcome of non-FT reconstructions but a

systematic investigation is beyond the scope of this work.

In this study, NOESY data obtained through exponentially-

weighted random sampling (see ‘‘Methods’’) leads to very

reliable and robust reconstructions as illustrated. Recently,

sinusoidal-weighted Poisson sampling has been reported to

result in high quality reconstructions (Hyberts et al. 2011;

Hyberts et al. 2010). We compared the psf-optimized

exponentially-weighted sampling scheme used in this work

with weighted Poisson sampling using the iterative hard

thresholding CS reconstruction with 40 % sampling of the

data (IT 40 %). The results of a direct comparison of the

two sampling types are shown in Fig. 8. Although similar

in overall appearance, in our case weighted-Poisson sam-

pling resulted in reconstructions with slightly more arti-

facts when using IT. Notable spurious deviations in the

reconstruction of the Poisson data are highlighted with grey

rectangles. Although in our hands this would seem to favor

exponential weighting, a more detailed comparison will be

required for thorough assessment.

To demonstrate the robustness of CS reconstruction to

noise, the iterative hard thresholding method was used to

reconstruct data sets recorded with only 8 scans. With

sampling levels of 40 and 50 %, this corresponds to

experiment times of 20 h and 25 h, respectively. A com-

parison with the corresponding Fourier-transformed spectra

(8 and 16 scans) is given in Fig. 9, where the three

sequential residues Ala 91-Gly 92-Leu 93 are shown rep-

resentative of a crowded spectral environment. The same

region based on a 16 scan reconstruction was shown in

Fig. 3. 1D spectra in Fig. 9 illustrate the basic signal-to-

noise range of the experiments recorded with 8 and 16

scans, resulting in experiment times of 50 h and 100 h for

FT processing. It is clear that at this lower signal-to-noise

ratio, the recovery is not as high quality as in Fig. 3.

However, as a test, automatic peak picking of the planes

was performed, again without any manual interference:

The picked peaks and dashed lines indicate a substantial
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Fig. 8 Influence of the sampling scheme on the quality of the spectral

reconstruction: comparing the results of a exponential weighting,

b full sampling, and c sinusoidal-weighted Poisson sampling. Data

sets in (a) and (c) were sampled to 40 % and reconstructed with

iterative hard thresholding, while (b) was Fourier-transformed.

Differences in the Poisson-sampled reconstruction are highlighted

by grey squares. The figure shows the F1, F2 [1H,1H] plane taken at

the 15N position 127.58 ppm (Ala 64), corresponding to part (b) in

Figs. 1, 2 and Supplementary Figure 2 and 3. Both reconstructions

used a high value for the constraint ||Ax - b||2 (*2 9 104)
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number of sequential NOE assignments and illustrate that

the reconstructed spectra are still of quality suitable for

assignment.

Conclusion

We show the suitability of compressed sensing as a

methodology to reconstruct crowded 3D NOESY 15N

HSQC spectra recorded on a large protein. In combination

with the use of sparse data sampling, this can lead to

substantial time gains. Conservative approaches can result

in a 60 % time saving, achieved by recording only 40 % of

the indirect data points sampled randomly with an

exponential T2 weighted bias. Recording 40 % of the data

matrix, we obtained high quality spectra of a large mem-

brane protein solubilized in detergent-micelles, despite

considerable overlap; consequently this approach enables

improvements in signal-to-noise and resolution, typically

limiting factors. The same approach can equally be applied

to other experiments such as e.g. 3D 13C-separated NOESY

making the combination of sparse sampling and com-

pressed sensing reconstruction a powerful tool for the study

of large biomolecules. Sampling as little as 20 % also

produced acceptable results; when applied to less

demanding cases i.e. smaller proteins, much larger time-

savings are obtainable. Several l1-minimization algorithms

were tested which produced comparable results, possibly
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Fig. 9 Robustness to noise: a 2D [1H,1H] strip plots of the sequential

residues Ala 91-Gly-92-Leu 93 are shown for the iterative hard

thresholding reconstructions of the 8 scan data with 50 or 40 %

sampling, compared with the 8 scan and 16 scan Fourier transformed

data. Peaks identified by a cross were automatically picked by the

peak-picking routine in CCPN Analysis. Assignments are omitted for

clarity but can be found in Fig. 3. Dashed lines indicate sequential

NOE assignments. b 1D projections illustrate the basic sensitivity of

the experiments recorded with 8 and 16 scans, respectively, which

would correspond to experiment times of 50 and 100 h for a fully

sampled data matrix
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with iterative thresholding being slightly superior and

providing shorter reconstruction times. Over the range

tested, the influence of the regularization (||x||1) and con-

straint (||Ax - b||2) parameters on the final reconstruction

quality was found to be relatively minor, although

enforcing too tight a constraint on the data matching term

(||Ax - b||2) does increase the level of artifacts in the

spectrum. The CS approach is demonstrated to be robust to

noise and less demanding on signal-to-noise than corre-

sponding experiments recorded for FT processing. Overall

the robustness to noise, high quality of the reconstructed

spectra and the substantial time savings obtainable make

the CS methodology a considerable asset for the study of

large biomolecular systems.
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